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I. INTRODUCTION

The field of decentralized (distributed) decision making has been an active

area of research for more than two decades [4, 11, 121. In the meantime, it has

been realized that decentralized decision problems are qualitatively different from

the corresponding decision problems with centralized information. The classical

"counterexample" of Witsenhausen [5,17] in decentralized stochastic control best

illustrates this point. It is safe to conjecture that the prohibitive factor in decen-

tralized problems is not so much the inadequacy of the mathematical tools

presently been used, but rather the inherent complexity (in the broad sense of the

term) of the problems that are usually been formulated. However, this ever-

present complexity is still to be pinned down in a precise mathematical way.

The present paper, which follows the liale of research of 1101, should be viewed as

a contribution in this direction. We focus on finite versions of some simple but

fairly typical decentralized decision making problems and characterize their com-

plexity by using the tools of the theory of computational complexity 12,01. Keep-

ing with the tradition of this theory, we consider "easy" those problems that can

be solved by a polynomial algorithm, whereas we consider NP-complete (or

worse) problems to be "hard". In our opinion, such an approach is a) more satis-

fying intellectually and b) given the present state of the theory of decentralized

decision making, it will allow us to sytematically identify hard problems and

redirect research efforts to new, easier or appropriately formulated problems.

Overview.
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The main issue of interest in decentralized systems may be loosely phrased

as "who should communicate to whom, what, when, etc.". From a purely logical

point of view, however, there is a question which precedes the above: "are there

any communications necessary"? Section 2 addresses the difficulty of the prob-

lem of deciding whether any communications are necessary, for a given decentral-

ized system. We use a formulation of this problem introduced in 110). We

impose some additional structure on this problem and we are able to determine

the boundary between easy and hard cases. In Section 3 we formulate the

discrete version of the decentralized detection problem and prove that it is, in

general, a hard one. In Section 4 we present and discuss a few problems related

to the problem of Section 2, including the team decision problem. Section 5 con-

tains our conclusions. All proofs may be found in the Appendix.
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U. A PROBLEM OF SILENT COORDINATION

Let (1, ..., Al) be a set of processors (decision makers). Each processor i

obtains an observation YE1', where Y is a finite set. Then, processor i chooses

a decision uj belonging to a finite set Uj of possible decisions, according to a rule

Ui y- i(yj), where -"7 is some function from Yj into UL. The M-tuple (yVI...,YM)

is the total information available and may be viewed as the "state of the

environment". For each state of the environment, we assume that only certain

M-tuples (uI,...,UM) of decisions accomplish a given, externally specified goal.

More precisely, for each (y1 ,. .,YM)EYIX .... X YM, we are given a set

S(yI .... ,yf)C UIX... XU of satisficing (using the term introduced by H.

Simon 1131) decisions. So, S may be viewed as a function from Y1 x " " X YU

into 2 U'X - xf U We then ask whether there exist decision rules -1i :Yj -* Uj

(involving no commun"cations) which always lead to satisficing decisions. This

problem was first introduced (for the case Af = 2) in [101 and may be formalized

as follows:

Problem DS: Given finite sets Y,, .. YM, U1, .. ,UM and a function

S : YI ... X YM -" 2
t × 
1  "X XUM, are there functions i:Vi-Ui, i=l,...,M,

such that

(hj(Yj),...,'iU(Y,%0 E S(Yj,....,Y.%), MlYt 1,. ,Ym)E- Yj X ... X YU ?

(2.1)

We are assuming above that the function S is easily computable; for exam-

pie, it may be given in the form of table. Also, note that the centralized counter-

part of DS would be to allow the decision u, of each processor depend on the



entire set of observations, in which case the problem would become trivial. Since

DS has a trivial centralized counterpart, any difficulty inherent in DS is only

caused by the fact that information is decentralized. In this sense, DS captures

the essence of coordinated decentralized decision making (silent coordination).

It was shown in [101 that:

a) The problem DS with two processors (M = 2) and restricted to instances for

which the cardinality of the decision sets is 2 (I Uj I--2, i = 1,2)* may be

solved in polynomial time.

b) The problem DS with two processors (Ml = 2) is NP-complete even if we res-

trict to instances for which I U, I = 2, 1 U2 I =3.

An extension of the above results is the following:

Proposition 2.1: The problem DS with three or more processors (M>3) is

NP-complete, even if we restrict to instances for which I U = 2, A/i.

We may therefore conclude that the problem DS is, in general, a hard com-

binatorial problem, except for the special case in which there are only two proces-

sors and each one has to make a binary decision. It should be noted that the

difficulty is not caused by an attempt to optimize with respect to a cost function,

because no cost function has been introduced. In game theoretic language, we

are faced with a "game of kind", rather than a "game of degree".

We now turn to special cases of DS, by introducing some more structure

(reflecting the nature of typical practical problems), with the aim of determining

For any finite et ,. we let I A I denote its ra,dnlity.



the dividing line between easy and hard special cases. Moreover, we restrict to

the case of only two processors (AI - 2). (Certainly, problems with M > 2 can-

not be easier.)

In the formulation of DS that we introduced earlier, all pairs

(Y1 ,Y2)E Y, X Y,, are likely to occur. So, the information of different processors

is completely unrelated; their coupling is caused oiliy by the structure of the

satisficing sets S(yI,y 2). In most practical situations, however, information is not

completely unstructured: when processor I observes yl, he is often able to make

certain inferences about the value of the observation V2 of the other processor

and exclude certain values. We now formalize these ideas:

Definition: An Information Structure I is a subset of Y, x Y 2. We say

that an information structure I has degree (D,D2), (D1 ,D 2 are positive

integers) if:

(i) For each Yj E Y, there exist at most D, distinct elements of Y 2 such that

(Yj,Y2) E I.

(ii) For each y2 E Y 2 there exist at most D2 distinct elements of Y1 such that

(YI,Y2) E L

(iii) D1, D2 are the smallest integers satisfying (i), (ii).

An information structure I is called classical if D, = D2 = 1; nested if

D I or D, = 1.

We now interpret this definition: The information structure I is the set of

pairs (Y,142) of observations that may occur together. If I has degree (Dj,Dj.,

I'
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processor I may use his observation yj to decide which elements of Y2 may have

been observed by processor 2. In particular, he may exclude all elements except

for (at most) D, of them. The situation raced by processor 2 is symmetrical.

If D = 1 and processor 1 observes Yl, there is only one possible value for

y2. So, processor I knows the observation of processor 2. (The converse is true

when D2 = 1). This is called a nested information structure because the infor-

mation of one processor contains the informaiion of the other. When

D = D , each processor knows the observation of the other; so, their infor-

mation is essentially shared.

By restricting our attention only to pairs (Y,, Y2) E I, we obtain the follow-

ing version of DS:

Problem DSI: Given finite sets Y 1,Y 2,U 1,U 2, I C YIX Y 2 and a function

S:I - 2 U ' U2, are there functions "y/ : Y --+ Uj, i=1,2, such that

(Y l(,Ym2(Y2)) E S(y,y 2), V/(Yu2) E I ? (2.2)

Note that any instance of DSI is equivalent to an instance of DS in which

S(Y1,Y2) -- U1 X U2, M Y14,2) 4 L.

That is, no compatibility restrictions are placed on the decisions of the two pro-

cessors for those (Y1,Y2) that cannot occur. We now proceed to the main result of

this section:

Proposition 2.2:

a) The problem DSI restricted to instances satisfying any of the following:



(i) One or more of I U, U2 1, DI, D2 is equal to 1,

(ii) I V, I = I U21 -- 2,

(iii) DI = D2 = 2,

(iv) D I IU2 = 2, (or D 2=I U1 1=2),

may be solved in polynomial time.

b) The problem DSI is NP-complete even if we restrict to instances for which

Ui =Di=3, I U21- =D= 2.

Note that the above result draws a precise boundary between polynomial

and NP-complete special cases, in terms of Di , I Ui 1, i=1, 2. We have seen that,

in general, DSI is NP-complete even if DI, D2 are held fixed. There is, however,

a special case of DSI, with DI, D2 constant, for which an efficient algorithm of

the dynamic programming type if possible:

Proposition 2.3: Let Y -- Yo = {1,2,...,n}. Let D be a positive integer con-

stant. Consider those instances of DSI for which (i,j) E I implies either

Ii-jI ID or Ii-jI>n-D. Then DSI may be solved in time which is polyno-

mial in n.

A condition of the type I i-j I < D, \/(i,j) E i is fairly natural in certain

applications. For example, suppose that the observations Yi and Y2 are noisy

measurements of an unknown variable z (y:-z+ wj) where the noises wi are

bounded: Iu' I <D/2. Similarly, the condition I i-j I D or I i-j I -n-D, V

(i,j)E I, arises iJ the observations yP, Y2 are noisy measurements of an unknown

quantized angle: yi = 0 + wi (mod 21r ), where the noises wi are again bounded

D/2.

ILI



I. DECENTRALIZED DETECTION.

A basic problem in decentralized signal processing, which has attracted

much attention recently 11,6,7,13,14,151 is the decentralized detection (hypothesis

testing) problem. In this section we consider the discrete version of this problem.

Two processors (sensors) S, and S2 receive measurements Y, E Y., i=1,2,

where Yi are finite sets. (Figure 3.1). There are two hypotheses H, and H, on

the state of the environment with prior probabilities p, and pl, respectively. For

each hypothesis Hi, we are also given the joint probability mass function

P(Y1 ,Y21 H) of the observations, conditioned on the event that Hi is true. Upon

receipt of yi, processor Si evaluates a binary message ui E {0,1} according to a

rule ui = -i,(y.), where : ' -0,1. Then, ul and u2 are transmitted to a cen-

tral processor (fusion center) which evaluates uo = u1A u2 and declares

hypothesis H. to be true if u0=0, H, if u0 = 1. (So, we essentially have a vot-

ing scheme). The problem is to select the functions '1, y2 so as to minimize the

probability of accepting the wrong hypothesis. (More general performance cri-

teria may be also considered).

Most available results assume that

P (Y,,Y2 I H) = P(, I R) P(Y2 Ili), i=1,2 (3.1)

which states that the observations of the two processors are independent, when

conditioned on either hypothesis.* In particular, it has been shown [15] that if

(3.1) holds then the optimal decision rules yi are given in terms of thresholds for

*Such an assumption is reasonable in problems of detection of a known signal In indepemdent noise, but it typi-
cally violated in problems of detection of an unknown signal.



the likelihood ratio pOP(H0 I y The optimal thresholds for the two sensors rre

pP(111 I sI )

coupled through a system of equations which gives necessary conditions of

optimality. (These equations are just the person-by-person optimality condi-

tions). Few analytical results are available when the conditional inependence

assumption is removed [7]. The purpose of this section is precisely to explain this

status of affairs.

Suppose that (3.1) holds and let Ni denote the cardinality of Yi. Given the

results of [15] there are only Ni + I decision rules -ji which are candidates for

being optimal. We may evaluate the cost associated to each pair of candidate

decision rules and select a pair with least cost. This corresponds to a polynomial

algorithm and shows that under condition (3.1) decentralized detection is an easy

problem. Without the conditional independence assumption (3.1), however, there

is no guarantee that optimal decision rules can be defined in terms of thresholds

for the likelihood ratio. Accordingly, a solution by exhaustive enumeration could

require the examination of as many as 2N,+ N, pairs oi decision rules. One might

expect that a substantially faster (i.e. polynomial) algorithm is possible. How-

ever, the main result of this section (Proposition 3.1 below) states that decentral-

ized detection is NP-complete even if we restrict to instances for which perfect

detection (zero probability of error) is possible for the corresponding centralized

detection problem.

We now present formally a suitable version of the problem:

Decentralized Detection (DD): We are given finite sets YI, Y2; a rational

number K; a rational probz'bility ma i function p : Y, X Y2 - Q; a partition

"11 I '' ".'.. . . . . '.. . . . ., * ,.,,. ,'-:'. , ', . =. . .



{Ao,AI) of Yj X Y 2. Do there exist -j, Y--, {0,1}, i-=1,2, such that

J(yi,y 2 ) < K ? Here

= 7172 P(3'IIY2) 11(yi) '72(Y2) +
(gY2,Y)E A.

+ P0!I42V) (1 - -1101) 72(YA)I (3.2)
(Yi,y)E A,

Remarks:

1. In the above definition of DD, think of H as being the hypothesis that

(Y1Y2) E Aj. Then it is easy to see that J( 11,-12) corresponds to the proba-

bility of error associated to the decision rules yI,'y2. Note that if a single pro-

cessor knew both yh and Y2 (centralized information) he could make the

correct decision with certainty. Consequently, the above defined problem

corresponds to the special case of decentralized detection problems for which

perfect centralized detection is possible.

2. If we let K = 0, then DD is a special case of problem DS with

I U1 = I U2 1 =2 and is therefore polynomially solvable.

Proposition 3.1: DD is NP-complete.

It should be pointed out that Proposition 3.1 remains valid if the problem is

modified so that fusion center uses some other rule for combining the messages it

receives (e.g. u. = (u1\ -u 2)), or if the combining rule is unconstrained and the

fusion center supposed to find and use an optimal combining rule.

Let us now interpret Proposition 3.1. Although it is, in a sense, a negative

result, it can be useful in suggesting meaningful directions for future research:

- JI



1,4

instead of looking for efficient exact algorithms, the focus should be on approxi-

mate ones. (In fact, it is an interesting research question whether polynomial

approximate algorithms for DD exist.) Proposition 3.2 also shows that any neces-

sary conditions to be developed for problem DD will be deficient in one of two

respects:

a) Either there will be a very large number of decision rules satisfying these

conditions,

b) Or, it will be hard to find decision rules satisfying these conditions.

Another consequence of Proposition 3.1 is that optimal decision rules are not

given, in general, in terms of thresholds for the likelihood ratio, because in that

case an efficient algorithm could be obtained. Of course, this fact can be also

verified directly by constructing appropriate examples. When the condition (3.1)

holds and decision rules are given in terms of thresholds, the decision rule of a

processor can be viewed as a tentative local decision, submited to the fusion

center. In general, however, optimal decision rules are not threshold rules and

this interpretation is no more valid. Rather DD should be viewed as a problem

of optimal quantization of the observation of each processor. In that respect,

Proposition 3.1 is reminiscent of the result of [31, namely that the general prob-

lem of minimum distortion quantization is NP-compete.

I
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IV. RELATED PROBLEMS.

The best known static decentralized problem is the team decision problem

[8,11] which admits an easy and elegant solution under linear quadratic assump-

tions. Its discrete version is the following:

Team Decision Problem (TDP): Given finite sets Y1, Y2, U1 , U2, a rational

probability mass function p:Y 1 XY 2 -Q and an integer cost function

c:YXY 2 XU 1 xU 2-- N, find decision 'les -'y:Y1 ---U, i=1,2, which minimize

the expected cost

12) = E C(Y 1 Y2," 1(Y1 )'Y 2(Y2 )) P(YI,V2)

YiEyi Y 2 EY 2

Another problem related to DS is the following:

Maximize Probability of Satiflcing (MPS): Given finite sets Y1, Y2, U,

U2, a probability mass function P: Y1 X Y2--+ Q and a function

S: Y X 2--+2
vU'x ', find decision rules -j: Y---Uj, i=1,2, which maximize

41,1 2) = P('h 1 (Y1),'7 2 (Y 2)) E S(Y 1 ,Y 2 ))
(which is the probability of making a satisfactory decision).

Given an instance of TDP, let

S(Y,42) = {(U 1 ,u 2 ) : C(Y1,Y2,Ult2)-

If we solve TDP, we also effectively answer the question whether J(y1 ,-Y2)=0.

But this is equivalent to solving the instance of DS associated to the above

definition of S(y1 ,y 2). Therefore, TDP cannot be easier than DS. The same

argument is also valid for MPS. It then follows from Proposition 2.2 that TDP

)I



and Ai'S are Nl'-hard (that is, NP-complete or worse) even if we restrict to

instances for which I U 1 -=2, 1 U2 1 =3. However, even more is true: it suffices to

notice that the problem DD of the previous section is a special case of both TDP

and MPS, with I U1 I = I U2 1 =2. Using Proposition 3.2, we obtain:

Corollary 4.1: TDP and AlPS are NP-hard even if we restrict to instances for

which UI = U1 =2. This is true even if the cost function c associated to

TDP is restricted to take only the values 0 and 1.

These results show that unlike the linear quadratic case, the team decision

problem is, in general, a hard combinatorial problerm.
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APPENDIX

Proof of Proposition 2.1: We will reduce to DS (with I U = 2, M - 3)

the satisfiability problem of propositional calculus with three literals per clause

(3SAT) which is a known NP-complete problem 12]. Given an instance of 3SAT,

let V be the set of literals, C the set of clauses. We construct an instance of

DS as follows: let

Y ={1,2,..., IVI}, U= 0,1}, i =1,2,3.

Let.

S(k,k, k) = {(0,0,0), (1,1,1)), k = V...IV.

Finally, we interpret each clause in C as stating that a certain triple of deci-

sions is not in the satisficing set. (For example, the clause (xi V -,zi V xk),

translates to the statement that the triple of decisions (0,1,0) does not belong to

S(ij,k).) It is then easy to see that a satisfying assignment for the variables in

V exists if and only if the above constructed instance of DS is a YES instance.

0

Proof of Proposition 2.2: a)

(i) If U, = 1 or U2 = 1, the problem is trivial. If Do-- 1, a satisficing

decision rule exists if and only if

n 7rl (S(yIY2)) 34 @, A/IlEYI,

{Y: (Y14,2) E 11

where r1(u1,u.) !. u1. The above condition can be clearly tested in polynomial

time (in fact 0(1 "11 1 Y 2 )time).

II



(ii) This is the result of 1101 mentioned in Section 2.

(iii) Possibly by renaming, let ',, Y, be disjoint sets. Consider the graph

G = ()' 1UY 2,I). (Ilere Y, U Y2 is the set of nodes, I the set of undirected

edges.) Since D, = 2, each node of G has degree at most 2. Therefore,

the connected components of G are either isolated nodes, chains or cycles.

Each connected component of G defines a subproLlem and these subproblems

are decoupled. So, without loss of generality, we may assume that G consists

of a single connected component. We may also assAne that G is a cycle (Fig.

A. 1). (If it is a chain we can introduce an additional edge to make it a cycle: this

will not make the problem any -asier because a new edge simply allows the pres-

ence of some more constraints.) In that case Y, and Y2 have the same number

n of elements. P'ossibly by renumbering (see Fig. A.l) we may assume that

I = {{i.i) i = I... n} U 1)i.i I): s - 2..., n} U {(ln)}

.et us define

,' l1, -t) : {( 1,.'-1)EU'lX V2: ( ,,a ) rl ' such that

(u.,:.) E S(n,n), (u,,u,>_1) E S(n,n-l), (ul,u.} E Sl,n)

and note that S' (1,n -1) 1 -valuated in 0( 1 :111211% 12) time. We now

have:

Ar. instance of DSI is a "YLS instance 4-

a , .. Un, U,,) eu-, i E S (i,s], i - I. and

. , -.



(u,, uiL1 ) E S (i,i-I), i = 2,...,n and

( , u , ... , U_, un-]) Ui, U ) E S (i,i), i = I,...,n-I and

(ui, ui ) E S (i,i-1), i = 2,...,n-I and (u1 , u,-,_) E 5' (1,n-1)

The last expression corresponds to a new instance of DSI in which n has been

replaced by n-1. Proceeding in the same way, the problem will be solved after

at most n similar stages. This is essentially an algorithm of the dynamic pro-

gramming type, with complexity 0(1 Y1 I I U1 I ' I U 2).

Remark: In fact an 0(1 YI f U1 IU 2 I ( U1 + U2 I ) solution is possible,

if at each stage of the dynamic programming algorithm we only eliminate one -

rather than two - variables. Also, if G is a chain, an 0( 1 Y I I U1 I I U2 )

algorithm is obtained along the same lines.

(1v) We now suppose that D- = I U21 = 2. Let Y - .

Y2 ={1,...,n } and assume, without loss of generality, that for each k E Y there

exist exactly two distinct elements i, j of Y2 such that (k,i) E I, (k,j) E I.

Note that we have a "YES" instance of DSI if and only if

Eul,...,uEU2 A v,...,v,,EU Mk,i)EI ((vkuj)ES(ki)j.

(A.1)
Consider also the statement



ui L,...u,EU 2 A(i,j)E Y 2 x Y- kE Y [[(k,i)EI A (k,j)EI A ipjj =>

A-vkCU, I(vk,u,) E S(k,i) A (vk,ui) E S(k,j)I] (A.2)

which is equivalent to

u i, - u,, CU,2 M/i,j)EI'2X Y2 J(uj,Ui)ES' (ij)]. (A.3)

where

(ij) = (i,u')E 2XU2:VkEY, [I(k,i)EI A (k,j)EI A i$ I->

AvkEU, J(vku)ES(ki) A (v,u')E S(kj) ) . (A.4)

If (A.I) holds, then it is easy to see that (A.2) holds, as well, with the same

assignment of values to ui,vk. Conversely, assume that (A.2) holds. For each k,

there exists only one pair (ij) such that the condition [(k,i)E!] A [(k,j)E 11 A

[(ij) holds. Accordingly, for each k, the clause [(vk,uj) E S (k,i) A

(vk,ui)ES(kj)] needs to be checked only for one pair (ij). Therefore, for each

k, a value of vk which ma-es (A.2) true can be chosen regardless of (ij) and this

value makes (A.I) true as well.

Therefore, we only need to show that the truth of (A.2) can be decided in

polynomial time. Note that, for each (ij), the set !'(ij) defined by (A.4) may

be constructed in time 0(I i U1 )•  Moreover there are at most

Min { 1 Y212,1 Y, I } pairs to be considered; so the sets S'(i,j) may be con-

structed in time 0(1 Y I IUl Min( I 12 12,, Y1 I )). Once S' (ij) is con-

structed, the statement (ui,ui) E S'(i,j) may be expressed as a set of clausesLJ



with two literals per clause (the literals are the boolean variables u1 , u1 ; this is

similar to the proof of part (ii), see [10] ). Therefore, deciding the truth of (A.3)

is a special case of the satisfiability problem of propositional calclus with two

literals per clause (2SAT), which can be solved in linear time (21.

b) Consider the following restricted version of the satisfiability problem for

propositional calculus with 3 literals per clause (3SAT). An instance of this res-

tricted problem (which we call RSAT) consists of the following: a set of boolean

variables F = F, U F 2, where

F1 = yj : i-=,...,n ; j - 1,2,3), F 2 = {z i : i = l,...,n}; also a set of clauses

C consisting of:

(a) one clause for each i between 1 and m, stating that exactly one of the vari-

ables yij, Y2, i3 is true and

(b) an arbitrary number of clauses of the form (-1yii\/ zk) or (-'yijV -'zk). It was

shown in 1101 that RSAT is NP-complete and that RSAT is equivalent to DS

* with I U 1 =3, 1 U2 1 =2. It will be useful to point out the reasons for the latter

fact: think of the observation sets Yj and Y2 as being equal to {l,...,m} and

{1,...,n), respectively. Which of the variables YXi,X,2,PX3 is true determines

whether -y(i) is equal to 1,2,3; similarly, the value of zt determines whether 12(k)

is 0 or 1. Finally, a clause of the form (-'yj\/ zk) would indicate that a certain

pair of decisions is incompatible, i.e. does not belong to S(i,k).

Let us now introduce a graph with nodes F1 UF 2 and edges



S-- {{i,k) :| j such that (-y,iV zk) E C or (-'yij V --zk) E C).

From this graph we may obtain a new one by lumping together (for each

i E {1,...,n )) the three nodes y,,, Yi2, Xi3 into one node yi. Let HI (respectively

H2) be the maximum degree of nodes of type yj (respectively Zk) in this new

graph.

We have indicated above a one-to-one correspodence between instances of

DS and RSA T. With this correspondence, it is not hard to see that if we have

an instance of DS of degree (D1 ,D 2), then the numbers H I, H2 obtained from the

sociated instance of RSAT are actually equal to D1,D 2 , respectively. (The con-

verse is also true.)

For this reason, it only remains to prove the following:

Lenima A.I: RSAT is NP-complete, even if it is restricted to instances for

S' which III = 3, H2 = 2.

Proof: Given that RSAT is NP-complete 1101, it is sufficient to start with a gen-

eral instance of RSAT and reduce it to a new instance for which I, = 3,

II. = 2 holds. This is accomplished by creating multiple copies of each variable

so that, instead of having the same variable appear in many clauses, distinct

copies of it are t.ied. Of course, some clauses will be needed to create the multi-

ple copies but these can be kept to a small number. The idea of the proof is best

shown diagramatically, as in Figure A.2. (A more formal argument may be found

in 1lO) but the present one is easier to visualize.)

Let yIl, y,., ;3 be variables in a given ir.stance of RSAT. We introduce

some new z-variables, as well as some clauses which guarantee, for example (see



Fig. A.2), that z 1-yil, z2=i 2, z3=z 6 =z 7=ZIo=Yn3. (For example, the clauses

(-z4 \/ -'Z3) A (-'zs \ -z3) A (-,z6 V z3),

together with a requirement that exactly one of the variables z 4,z5,z 6 is true,

implies z3=zB.)* In this way we can effectively create an arbitrary number of

copies of the y-variables and the same procedure works for the x-variables as

well. Note that in doing so, we have respected the requirement HI = 3, 112 = 2.

Finally, for each clause in the original instance of RSAT, we may introduce a

clause involving appropriate copies and it is easy to see that the requirement

11 3, 112 -- 2 will be still respected, as long as we use a different copy each

time. Moreover, since an arbitrary number of copies may be created by the

above procedure, an arbitrary number of clauses for the original instance of

RSAT may be thus handled. 0

Proof of Proposition 2.3: This proof is effectively a generalization of the

dynamic programming argument in the proof of part (a) (iii) of Proposition 2.2.

Let us assume that n > 2D. For any k such that 2D < k < n, let

r(k) -(UI,VI,U2,V2,...,UD,VD,UkD+ 1,Vk-D+ I,...,uk,Vk) E (U1 X U2)2D

S(U+ IvD+ l,...,Uk-D,vk-D) E (Un X U2)k-2D such that

0 The arts is Figure A.2 iadicate the variables that have a common clause; solid lines iadicate that two vari-
abkle are coat raimed to be equal; a curve eaeircliag a triple of variables is FI indicates that these are to be
merged to a single sod@.

L4-



(u , vi ) E s(ij) (ij) E }1,...,k2 n I

Note that U(k) is of size at most I U, I 2D I U2 I 2D Now assume that

2D < k < n-I and let

lf(k+ 1) -- {UI,V2,2,U..,D,VD,Uk_/7+ ,,Vk-D+ 1,..,Uk+ 1,Vk+ 1) E (Ul XU22D2
F~k+1) =~ C U1 xU 2 )2 D+ 2

('D-+ I,VD+ I,...,UkD,hv.D) E (Ul X U2)k - 2D such that

(uj,vi) E S(i,j), A /(i,j) E {,...,kt 1)2 n I

Using the assumption I i-j I < D, or ji-jj In-D, V(i,j) E I, we can

see that

{,...,k+ 12 n I c 1{l,...,k} 2 n I) U Ak+ I

where

A+ I = {i,...,D,k-D+ 1,...,k+ 1}2

Witt, this observation, l(k+ 1) may be rewritten as

f(k+ 1) -

((UIIVjIU2V*...,UDVDUkD+ IVkDI.. ... ,Uk+ ,Vk+ 1) X U2 )2D+ 2

(U,V,a2,V12,....UD,VD,uk-D+ i,vkD+ t,...,uk,VK) E r (k) and

(u,,vi ) E S(i,j), V (ij) E Ak+ I

A izming that the set I(k) has teen computed, we may use it to evaluate

( (k+ 1) as follows: for each element of r(k) (at most U, I 2D I U2  2D ele-

rn .. s) try each pair (Uk+ ,i,tk+1) E U, X U2 ( j U, I I U2 I pairs) and cheek

for each (i,j) Ak+ fli (A+ I has at most 4D 2 elements) whether (ai,v,)C

Ii



S(i,j) holds. Therefore, given r(k), we may obtain l(k+ 1) in time

0 (D2 1 U1 1 2D+ 1 U2 1 2D+ 1) . Finally, from f(k+ 1) we may easily obtain

r(k+ 1), by taking a projection so as to eliminate UtkD+ 1, Vk-D+ I This pro-

cess may be repeated (for no more than n stages) to compute 17(n), in time

O(nD2 I U, I 2D+ I I U2 I 2D+ 1). Then note that we have a YES instance of

DS! if and only if r(n)30 . 0

Remark: The algorithm in the proof of Proposition 2.3 does not find a

satisficing decision rule; it only determines whether one exists. However,

satisificing decisions rules may be computed by keeping in the memory some of

the intermediate results produced by the algorithm.

Proof of Proposition 3.1: Consider the following problem of propositional

calculus, which we call P:

Problem P: We are given two sets X = {z,...,z.), Z=(z1,...,z,} of boolean

variables; a set D of (distinct) clauses of the form ziA zi or -'(zA z,) (we assume

that for any pair (i,j) at most one of the above clauses is in D); a collection

{qii : i E {l,...,m), jE (I,...,n}) of non-negative integers and an integer K. Is

there a truth assignment for X and Z such that J K, where

J= qqi +  qqi (A.5)

s, A z, - 0 AA s,-]
(i'i)E A, (ij)E A.

A, {(i,j): the clause -,(ziA zi) is in D},

A, = ((i,j): the clause (ziA zi) is in D)

aft. J is the Sim of %bf Voighti of the eloal that aft mot "tWled.

IA
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Lemma A.2: Problem P is equivalent to DD.

Proof: Think of X, Z as being the sets of observations of processors S1, S2,

respectively. A truth assignment to X,Z corresponds to a choice as to what

binary message to transmit to the fusion center, given each processor's observa-

tion. Let H, (respectively HI) be the hypothesis that (i,j)E A. (respectively

A,). Finally, view qij, as the (unnormalized) probability that the pair (ij) of

observations is obtained by the two processors. Pairs (ij) that belong to neither

A. nor A, may be viewed as having zero probability and are, therefore, of no

concern. Then, it is easy to verify that J, as defined by (A.5) is precisely the

(unnormalized) probability of error. 0

In order to complete the proof of the Proposition, we need to show that P is

NP-complete. This will be accomplished by reducing to P the following (Max-

imum 2-Satisfiability) problem of propositional calculus which is known to be

NP-complete (2]:

MAX-2-SAT: Given a set U of boolean variables, a collection C of (distinct)

clauses over U, such that each clause CEC has exactly two variables and an

integer K < I C 1, is there a truth assignment for U which simultaneousiy

satisfies at least K of the clauses in C? (Without loss of generality, we assume

that if a clause is in C, then its negation is not in C).

Suppose that we are given an instance (U,C,K) of MAX-2-SAT. We con-

siriiel an instance of P as follows: Suppose that U - { }. Then, let

X---{.rii 2,Xi3: i=l,...,n} and Z -- i,Zi2,zi3: i - 1,...,n) For each

' .



i E {E,...,n) introduce the set Di of clauses:

-(-j ib(-Ti2A zO), -(-_i2A z (-3A ziA)

To these clauses we assign the weights (L is a large integer to be determined

later):

qjIj2 = 30L q2,2 = 15L, q%2,i =- 4L, q0,i 2 = 20L

%2,3 - 8L, qjSjf = 2L, q,0 = 25L, q,j3 - IOOL

Next, for each clause (ui A u,) , (-'u A ui), (-uu A -mui ), (u,\/ uj},

(- iu\/ ui), (-1u.\1 -,u) in C (with i < j), introduce clauses (ziA zi)

(Xi2A zid), (xi 2A z 2) , -'(Xi2A z, 2), -(xilA z 2) , -'(ziA z,1 ) , respec-

tively. Denote this last set of clauses by D, and assign to each one unit

weight. We now let D = U Dt and observe that X,Z,D,{qj}, K define an

instance of P.

Note that for any assignment for X,Z, the corresponding cost (equation

(A.5)) may be decomposed as

J=J" + t, (A.6)

where JI, IE{O,1,...,n) is the sum of the weigfts %j of the clauses in D, which

are not satisfied.

Lemma A.3: For any i E {l,...,n), we have J,. - 35L if and only if either ofh A



the following is true:

(i) I =; 1i3 , 3 -i2 =3, 2

(it) 1i2 2 - i3 - 'i3 1, TiI = zi 1 0

For any assignment to {xij, z ij :i-1,2,3} other than the two assignments

above, J' > 37L.

Proof: By direct evaluation of J; for each possible assignment. See [161. 0

In view of Lemma A.3, the clauses in Di and their associated weights have

the following interpretation: the variable zil may be freely assigned, but the

remaining variables must be assigned so that ;i2 = Zi2 = -Zil -- -'Xi. For this

reason the clauses in Do are effectively the same as the original set C of clauses.

Lemma A.4: Let L be large enough so that I C I <L. Then, there exits a truth

assignment for U for which at least K clauses in C are satisfied, if and only if

there exists a truth assignment for X,Z such that the resulting cost J is less or

equal than ,35nL + IC - K.

Proof: (i) Given an assignment for U, with at least K clauses satisfied, assign

the variables in X,Z as follows:

Xi = :1 -- UI, 'i2 -- -'U1 ' V i3 - -i3 1-

Using Lemma A.3 and the identity (A.6), the resulting cost is 35nL (i.e. 351,

from each collction Di, i=,...,n) plus the number of clauses in Do which are

not satisfied (since these carry unit weight). The latter number is identical to the

number of clauses in C.' which are not satisfied, which is less or equal than

C~ K.



(ii) Conversely, given an assignment for X,Z such that J < 35nL + C I -K,

suppose that for some i E {1,...,n}, J > 37L. Using Lemma A.3 and the ine-

quality I C I <L, we obtain

J > E Jj - 35nL + 2L > 35nL + I CI-K

which is a contradiction and shows that J- = 35L, A/i. Consequently,

{.til,i 2,zil,Z 2} have been assigned values in one of the two ways suggested by

Lemma A.3. We now assign truth values for U, by setting u; = zil. Then J is

the number of clauses in C which are not satisfied. Moreover, since

Jj-= 35L,i E {1,...,n}, it follows that J _ C I -K, which implies that at

least K clauses in C are satisfied. This completes the proof of Lemma A.4.

0

It is easy to see that the above reduction of MAX-2-SAT to P is polyno-

mial. Therefore, P is NP-complete and so is DD, thus completing the proof of

the proposition. 0
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Figure 3.1

A Structure for Decentralized Detection

Figure A.1

A Bipartite Graph Consisting of a Single Cycle

Figure A.2

The Construction of Copies of the Original Variables
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